A8 DESIGN OF A MINIATURE COMPUTER 1M

Each type of computer is distinguished by its own repertoire or list of in-
structions that the control unit is capable of interpreting and executing. The rep-
ertoire is generally fixed and is furnished as built-in circuitry by the computer
designer or is stored in read-only memory. In some machines there are several
hundred different instructions available in the repertoire.

A6 DESIGN OF A MINIATURE COMPUTER

The principles developed in the foregoing sections can be better understood if we
digress here to design a very small, simple computer and see how it might be
operated to solve one or two simple problems. By “design” we mean that we will
specify the main characteristics of the computer’s key components.

The storage unit

First we shall design a small storage unit, as shown in Fig. A.3, which consists
of 25 cells numbered from 01 to 25. Each cell will be able to hold a number
represented by three decimal digits and a sign.)

For simplicity we will assume that our computer will deal with integers that
are limited to the range —999 to +999, so that any such number may be con-
tained in a single word of storage. Similarly, we will assume that each instruction
is represented by a three-digit code. An instruction can also be stored in a single
word. The sign position of an instruction will always be plus.

01 06 11 16 21 &
+055 One word
02 07 12 17 22
e e
Three digits
03 08 13 18 23 0-9
+199
Sign
04 09 14 19 24 + or —
05 10 15 20 25 .
Fig. A.3 A 25-word storage unit with each word
holding a sign and three decimal digits.
The order list

If we agree that the computer has an order list of no more than ten instructions,
we can assign a one-digit code, 0 through 9, for each instruction. A possible set
of simple orders is given in Table A.1. The order list will be better understood
when we explain how the processing, control, and input-output units are to func-
tion.

412 A QUICK LOOK AT CONVENTIONAL COMPUTER SYSTEMS AS

Table A.1 A simple order list for a miniature computer

Symbolic Machine
Action abbreviation code
1. Arithmetic Clear and add CLA 1
' Add ADD 2
Subtract SUB 3
Store STO 4
Multiply MPY 5
-Divide DIV 6
2. Input- Read RDS T
output Print PRT 8
3. Control Transtfer
unconditionally TRA 9
Transfer
on minus TMI 0

The processing unit

At the heart of the processing unit is a device for holding the results of individual
additions, subtractions, multiplications, or divisions. We call this device the ac-
cumulator. In our machine, the accumulator, often abbreviated as ACC, holds a
sign and six digits. To see how the accumulator might be used, let us imagine
that we wish to find the sum of the two numbers found in positions 21 and 23 of
storage. The values found in these locations might be +055 and +199, as shown
in Fig. A.3. The clear and add instruction, whose code is 1, may now be used to
make the accumulator zero and then to add to the “cleared” accumulator the
number found in any designated word of storage. To designate the contents of a
particular word requires two more digits to identify the address of that word
uniquely, For example,

121

might be made to mean: clear the accumulator to zero and add (to the accumu-
lator) the contents of word 21. Then

2 23

might mean: add (to the accumulator) the contents of word 23.

In this way we have a concept of what an instruction for our computer should
be. In our example, after the 1 21 instruction is executed, the ACC would con-
tain +000055. Then, after the execution of the 2 23 instruction, the ACC would
contain +000254. We are now ready to formalize this concept.

A.6 DESIGN OF A MINIATURE COMPUTER 413

Instructions

The instruction code is represented as a three-digit number. The first digit is a
code for the particular operation, or action, that we wish the computer to take;
the last two digits form the address of a number that is to be involved in the
action.

We continue with our example. Having formed the sum of the two numbers
in the accumulator, we now wish to place it in some word of storage, say at ad-
dress 25. In our example the accumulator now contains +000254. The code

.

4 25

means: store the sign and the three lowest-order (rightmost) digits of the accumu-
latort at address 25. If properly interpreted and executed, this instruction would
accomplish our objective. In short, the sequence of instructions

can be thought of as a “program” to form the sum of two numbers found 4t ad-
dresses 21 and 23 and to store this sum at address 25.

Machine codes and a symbolic equivalent

These three-digit instructions are often called machine codes because they are the
codes understood by the machine we are designing.

Our problem might have been initially stated as: “Form c as the sum a + b”
or “Let ¢ =a + b” or even more simply, “c <a + b.”

Let us imagine that we want the computer to perform this task. As a first step
we might choose to describe the desired computer action in an “intermediate”
language, say,

CLA A
ADD B
STOD C

T A sum or product that extended beyond the third digit could not be stored in its entirety,
using the store instruction. However, another type of store instruction might be added to the
order list of Table A.1, which when executed would copy and store the three highest-order
digits. Without this extension the computer, as we now describe it, is admittedly limited
rather severely. Note that, although for practical purposes, no final arithmetic result can ex-
ceed three digits in size and be stored, an intermediate result of a computation might exceed
three digits. Consider the computation 50 X 50 — 45 % 55 = 2500 — 2475 = 25. The inter-
mediate products have four digits, but the final result has only two digits.

414 A QUICK LOOK AT CONVENTIONAL COMPUTER SYSTEMS A.6

These “symbolic” codes can then be transformed to the numerical machine
codes, provided we are willing to identify certain storage addresses with particu-
lar variables. Thus, if we agree that A, B, and C are to correspond respectively,
say, to addresses 21, 23, and 25, we can transform the intermediate symbolic
code to machine code in a straightforward one-to-one correspondence. (Recall
that there was a corresponding idea in the ideal computer. It involved choosing a
container and labeling it.) Figure A.4 displays the process of translation from
problem statement to machine code. Professional programmers are often forced
to write 'instruction. sequences in a symbolic equivalent of machine code. The
translation to machine code is then accomplished automatically by the computer
with the aid of specially written programs called assembly programs. Of course,
our own miniature computer is probably not capable of performing this trans-
lation.

Same action

represented

in machine
code

Problem
statement

in
flowchart language

Picturing the
action a
computer must
take

'

L

CLA A
ADD B 2 23
STO C 4 25

| SN P N g

We picture Then we translate to
in a symbolic machine code:
code what the 1. Replace code abbreviations
machine must do. with numeric codes.
2. Replace variables with
addresses. Figure A.4

1 21
c+a+b

o i i e s el e ' i s i i

The conirol unit

The control unit will have two registers, for interpreting and executing the desired
sequence of instructions. Registers are much like storage cells in that they will
each hold one number. However, they tend to be much more specialized in func-
tion and faster in operation as well. One of the control registers, called the in-
struction register (IR), will have a three-digit capacity to hold the instruction that
is being examined and executed. Another register, called the instruction counter
(IC), will have a two-digit capacity to hold the address of the next instruction to
be brought from storage. When action on one instruction is completed, the con-

A.6 DESIGN OF A MINIATURE COMPUTER 415

trol unit will bring the next instruction from the storage address given by the IC
and place it in the IR. While this is going on, the number in the IC is increased
by 1.

Figure A.5 illustrates this sequence of events for the second step in the prob-
lem to compute the sum of a + b. The three machine instructions are assumed
to be stored at addresses 07, 08, and 09.

In our simple computer it will be possible to manually set a number in the
IC while the computer is idle. When we throw a switch, the cyclical action will
begin. Action commences by bringing to the IR the instruction found in the cell
designatéd by the initial setting of the IC. At the same time the IC is increased
by 1. Now the instruction in the IR is executed. In this way, if the IC is initially
set to 07, the computer will automatically execute one instruction after another
from sequentially addressed storage positions.

416 A QUICK LOOK AT CONVENTIONAL COMPUTER SYSTEMS A6

Input and output units

The input and output devices are designed to function in very simple fashion. We
shall imagine that the input unit is capable of reading numbers one at a time
from the input device (which might be a punched-card reader). In executing the
read instruction,

T 21

for example, the input unit reads a signed three-digit number, the first one re-
ceived from the input device. The number so read is transmitted to storage and
placed at location 21. Recall that the digit 7 was selected as the code for the
read instruction. Figure A.6 schematically represents this input action. Here we
can assume that the IC was manually set to 05 to begin this process.

Cards stacked
for reading

P A———

Control unit Control unit
IR IC IR IC
[1]2]1] IDIB}"’——'H 2!2 si 0]9'
A
\ Storage Storage
01 06 11 16 21 01 06 11 16 21
+055 +055
02 07 12 17 22 02 07 12 17 22
+121 +121
03 08 13 18 23 03 08 13 18 23
ad +199 +223
04 09 14 19 24 04 09 14 19 24
+425 +425
05 10 15 20 25 05 10 15 20 25/

[+[efofo]o]s]s]

ACC

(a)

.

LLefo]o]=]5] 4]

ACC

Processing unit
(b)

.,/

Card reader

o e o e . o 2y

Cards already read

Control unit

Fig. A5 (a) The instruction in the IR has just been completed, leaving +000055 in the
ACC. The instruction at 08 is being brought from storage to be placed in the IR (destruc-
tive read-in). While this is going on, the number in the IC will be incremented by 1. (b) The
instruction from 08 is examined and executed, resulting in a new value, T000254, in the
ACC.

IR IC
[lele] [ofe]
Storugf—\
01 06 11 16 21
+723
02 07 12 17 22
03 08 13 18 23
5302
04 09 14 19 24
420
03 10 15 20 25
+721
Figure A.6

A6 DESIGN OF A MINIATURE COMPUTER a7

The next instruction is taken from 06. It might be another input instruction.
This time the next number is copied from the input device and placed in storage
address 23. In this manner we obtain the values for @ and b so that in the next
steps the computer can add them.

If we want to have the computer print the result of the computation, we need
an output instruction. Consulting Table A.1, we see that an appropriate instruc-
tion would be

8 25

meaning “display on the printer the contents of storage location 25.” Supposing
that such an instruction is placed at address 10, we see a full sequence of instruc-
tions which, if executed, would read data, compute, and print a result. The output
step is illustrated in Fig. A.7.

Control unit

IR Ic
(o] 2]5]
Storage
01 06 11 16 21
+723 +055
02 07 12 17 22
+121
03 08 13 18 23
+223 +199
04 09 14 19 24
+425
05 10 15 20 25 Line printer
+721 +825 +254
Figure A.7

A closed loop of instructions

A computer’s power lies in its ability to repeatedly execute simple_ or _complex
processes at high speeds. To repeat the simple process we are con;udermg here,
perhaps on many pairs of values for a and b, we can imagine stackmg‘many sets
of data to be read. For each set of data we wish to execute the instructions stored
in addresses 05 through 10, so that the computer can read the data, compute, and
print the resulting sum. Such repetition can be accomplished by placing a transfer

418 A QUICK LOOK AT CONVENTIONAL COMPUTER SYSTEMS A6

instruction in address 11. The code digit we have chosen for this is 9 (see Table
A.1). The instruction we want is then

9 05

which would mean “just replace the contents of the IC, now 12, with 05 (the
address portion of the instruction in the IR).” No other action is taken. Transfer
instructions effectively alter the sequence of instructions being executed. In this
case the net effect is to form a “closed loop,” repeating instructions located at 05
to 11, inclusive. Figure A.8 diagrams the action in the control unit when a trans-
fer instruction is encountered. In Fig. A.8(a) the instruction from address 11 is
brought to the IR, and the contents of the IC are increased from 11 to 12. Exe-
cution of a transfer command involves only the control unit. In Fig. A.8(b) the
contents of the IC are replaced by the rightmost two digits of the IR.

Control unit Control unit
IR 1C . [\\
L —+
lel[s] [l Lolofs]. [o]s]
A
\Storugc Storage
[0} 06 11 16 21 A 01 06 11 16 21
+723 | +(03) el +723 | +905
02 07 12 17 22 02 07 12 17 22
+121 +121
03 08 13 18 23 B 03 08 13 18 23
+223 |t +223
04 09 14 19 24 04 09 14 19 24
+425 +425
05 10 15 20 25 . 0s 10 15 20 25
+721 | +825 | +721 | +825
(a) (b)
Figure A.8

Figure A.9 summarizes in flowchart representation the algorithm that we
have just coded as a machine-language program.

Terminal read process

Under what circumstance will a program loop such as that in Fig. A.9 terminate?
When the input stack of cards has been exhausted, the next read instruction can-
not be carrried out. We will therefore design our computer so that it will auto-
matically halt when it is asked to execute a read instruction and there are no more
cards available to be read.

A6 : DESIGN OF A MINIATURE COMPUTER 419 420 A QUICK LOOK AT CONVENTIONAL COMPUTER SYSTEMS A6

Table A.2 Code for computing |a — b|

» Symbolic code Machine code
1/ - Address Instruction Addresst Instruction
Start
g START RDS A 09 701
2 y > RDS B 10 702
4 b ¥ CLA A 11 101
e SUB B 12 302
a . STO C 13 403
3 JP TMI NEG 14 017
AGAIN PRT C 156 803
(s g TRA START 16 909
v NEG CLA B 17 102
. . b SUB A 18 301
T | STO C 19 403
TRA AGAIN 20 915
C/J + We are assuming the following: (1) Instructions begin at 09.
. i ceda—b (2) A at 01, B at 02, C at 03. ,
Figure A.9
c<0 .
Exercises
1.) Although we have not yet described division in our miniature computer, let us -
assume that a quotient p + g (the integral part) may be obtained by the code
sequence that corresponds to ———- Negative
CLA P
DIV Q
The resulting quotient will be found in the three lowest-order positions of the Y
ACC, ceb—a
Write a sequence of symbolic codes and corresponding machine codes that
will compute the value
_a—b
Y T a+ b
Draw a picture of the storage cells showing all instructions and locations for
original or intermediate results. You must make certain decisions, such as where ————————— - Print
to keep a, b, and y in storage and at what location to begin the program.
Hint: Before the division can be carried out, both the numerator and the
denominator must be computed. At least one of these must be saved, in a place h 4
that you will have to designate, while the other is being computed. .
2. /After completing Exercise 1, write a sequence of instructions that reads a pair of
values for @ and b from punch cards, computes y, prints it, and returns to read
another pair of values. Fig. A.10 Flowchart for computing |a — b |.

A7 REFERENCES ON COMPUTER SYSTEM ORGANIZATION 421

3. Assume that a product p X ¢ may be obtained by the code sequence that cor-

responds to
CLA P
MPY Q
Write a code sequence to compute the following.
_axb Ll
Y= ¢ il X c
Decisions

We have included a conditional transfer instruction in our miniature computer’s
order list. We have selected the transfer on the minus, or TMI instruction, with a
code 0. Upon executing a TMI, the computer examines the sign of the ACC. If
it is negative (—), the instruction is then treated as an unconditional transfer, or
TRA instruction. That is, the last two digits of the instruction replace the current
contents of the IC, thus breaking the normal sequence of instructions. If the sign
of the ACC is positive (+), no further action is taken. The computer then goes
on to get the next instruction in the normal sequence. .

Let us see how we might employ the TMI instruction to compute and print
the absolute value of a — b, or |a — b|, for many pairs of values, a, b. There
would be several alternative ways to code this problem. One approach, not the
best necessarily, is diagrammed in Fig. A.10 and coded both symbolically and in
machine code in Table A.2. Here is one way you can follow this program step by
step and gain an added grasp of the process that goes on inside the computer:
(1) Draw the storage unit, arithmetic unit, and control unit, as we have done in
earlier figures. (2) Enter the instructions in their proper ‘“‘squares™ of storage.
(3) Place 09 in the IC. (4) “Turn the switch on” and begin computing with a
pair of values for @ and b. Try it.

A7 REFERENCES ON COMPUTER SYSTEM ORGANIZATION

Bell, C. G., J. C. Mudge, and J. E. McNamara, Computer Engineering: A DEC
View of Hardware Systems Design. Digital Equipment Corporation, Bedford,
Mass., 1978.

Organick, E. 1., and J. A. Hinds, Interpreting Machines: Architecture and Pro-
gramming of the B1700/B1800 Series. Elsevier-North Holland, New York, 1977.
Tanenbaum, A. S., Structured Computer Organization. Prentice-Hall, Englewood
Cliffs, N.J., 1976.

Exercises:
1. Write a program that will read two values, a and b, and will print the quantity %, and then loop to read another pair of values.

. . a axb
2. Write a program that will read three values, a, b, and c, and compute brc’ and —

3. Write a program that will read a number and print its absolute value.

In all three of the above programs, write the assembly code first, then write the machine code, then place the code into computer memory.

